Module 2: Western Blot

BMES Cell Team Fall 2020

Outline

- Protein Basics
- What is a Western Blot?
- Western Blot Protocol
 - BCA Assay
 - SDS Gel Electrophoresis
 - Immunoblotting
- Western Blot Video
- Pipetting basics

Proteins

• **Definition:** Proteins are macromolecules made of amino acids.

- → Chains of amino acids make up proteins
 - → Proteins have a wide structural range → large functional range
 - → Key players in organism's metabolic & regulatory activity

What is Western Blotting?

Definition: A Western Blot separates and identifies target proteins.

- → Two stage procedure confirms protein presence and quantifies target
 - → Proteins separated by size through gel electrophoresis
 - → Target proteins visualized through immunostaining

Blotting techniques minery

Western Blot Utility

- · Understand mechanisms of cell behavior
 - Protein's primary function in organism

- Probe for a specific disease
 - Viral:
 - HIV
 - Bacterial:
 - Meliodosis
 - Prion:
 - Creutzfelt-Jakob disease

DISEASE-CAUSING PRION

Basic Protocol for a Western Blot

- 1. Lyse cells and collect proteins
- BCA Assay
 - Calculate sample protein concentration
- SDS Gel Electrophoresis
 - Separate proteins by size
- 4. Transfer proteins to membrane
- 5. Immunoblot target proteins
 - Antibody Binding
- 6. Image membrane

Basic Protocol for a Western Blot

- 1. Lyse cells and collect proteins
- 2. BCA Assay
 - Calculate sample protein concentration
- 3. SDS Gel Electrophoresis
 - Separate proteins by size
- 4. Transfer proteins from gel to membrane
- 5. Immunoblot target proteins
 - Antibody Binding
- 6. Image membrane

BCA Assay

- Definition: A bicinchoninic acid assay (BCA Assay) uses absorbance readings to determine total protein concentration in a sample.
- First, create a standard curve
 - Concentration of protein in each well is known
- Then, add experimental samples
 - Concentration of protein is unknown
- Using standard curve absorbance readings,
 correlate protein concentration to absorbance
- Use standard curve to calculate experimental protein concentration

How does a BCA Assay work?

- Step 1: Biuret Reaction
 - Green cupric Cu²⁺ in BCA reagent binds to sample protein
 - → reduction to cuprous Cu¹⁺
- Step 2: BCA and Copper Chelation
 - 2 BCA molecules bind to Cu¹⁺
 - → purple chelated complex
- Step 3: Measure Absorbance
 - Purple complex absorbs maximally at 562 nm
 - Absorbance

 # purple complexes

 # peptides

Beer's Law

Definition: Beer's Law relates a sample's absorbance reading to total protein concentration.

$$A = \varepsilon \cdot L \cdot C$$

- A = absorbance reading from plate reader
- ε = molar absorptivity constant
- L = path length
- C = protein concentration
 - As ε and L are constant, there is a linear relationship between absorbance and protein concentration (A ∝ C)

SDS-PAGE

Definition: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) separates proteins by size.

- First, load the protein ladder at the two ends of the well
 - Set of standards that allow us to estimate protein size
 - Dalton (Da) = atomic mass unit
 - kDa = 1000 Da
- Then, load your sample into the central wells
- Run the gel and use the ladder to estimate protein size

How does SDS-PAGE work?

Key Reagents

- Beta-mercaptoethanol (βME)
 - Reduces disulfide bonds in protein → disruption covalent bonds
 - Protein linearization
- Sodium Dodecyl Sulfate (SDS)
 - Anionic detergent that binds to protein side chains → disruption noncovalent bonds → protein denaturation
 - Coats denatured protein in uniform negative charge
 - Charge of protein

 length of protein

How does SDS-PAGE work?

- Polyacrylamide (PA)
 - Water soluble polymer
 - 3D networks of polyacrylamide → porous gel
 - · Smaller proteins can travel faster through the porous gel
- Gel Electrophoresis (GE)
 - When placed in an electric field, the negatively charged proteins will migrate toward the positive electrode
 - Since smaller proteins can travel faster through a porous gel, loading protein samples into a gel then creating an electric field around the gel separates proteins by size

Protein Transfer

- Polyacrylamide gel → nitrocellulose membrane
 - Antibodies cannot bind to proteins when they are on the gel
 - Must transfer proteins onto a nitrocellulose membrane and

 retain the gel electropheresis size certing

retain the gel electrophoresis size sorting

- Transfer proteins using electroblotting
 - Align the gel and the membrane
 - Use an electric current to pull negatively charged proteins toward a positively charged anode and onto the membrane

Immunoblotting (What Makes it a Western Blot!)

- **Definition:** Immunoblotting uses antibodies to identify proteins.
- Antibodies are proteins in the immune system that target specific antigens
- Primary Antibody: binds to target protein
 - · Loading Control: Actin (constitutively expressed in all cells)
- Secondary antibody: binds to primary antibody and amplifies the signal
 - Primary and secondary antibodies must be from a different species
 - than the target protein
 - If not, will have non-specific binding

How does Immunoblotting work?

Imaging

- Chemiluminescence
 - Chemical reaction between enhanced chemiluminescence (ECL) substrate and horseradish peroxidase (HRP) enzyme conjugated to the secondary antibody
 - Releases energy as light
 - One of the easiest ways to examine proteins involved

Interpreting a Western Blot

- Loading control band:
 - should be the same in all samples
 - If loading control is not the same, result is invalid
- Band position on gel:
 - Different sized proteins show up at different heights
 - Larger proteins show up closer to the original well position
- Band intensity:
 - The darker the band, the more protein is present

Interpreting a Western Blot

- Greater target protein intensity in wells 2 and 3

Western Blot Video

https://youtu.be/yUstng0npaY

Micropipettes

Definition: A micropipette is a laboratory instrument used to measure small volumes (on the order of microliters).

Micropipette sizes

P20: 2 – 20 uL P200: 20-200 uL

P1000: 100-1000 uL

Be mindful of which size you are using

How to use a Micropipette

https://www.youtube.com/watch?v=TMFeV9h6zEA